Widespread 3’ UTR splicing regulates expression of oncogene transcripts in sequence-dependent and independent manners

Author:

Riley Jack J.ORCID,Alexandru-Crivac Cristina N.,Bryce-Smith SamORCID,Wilson Stuart A.ORCID,Sudbery Ian M.ORCID

Abstract

AbstractBackgroundSplicing in 3’ untranslated regions (3’ UTRs) is generally considered a signal to elicit transcript degradation via nonsense-mediated decay (NMD) due to the presence of an exon junction complex (EJC) downstream of the stop codon. However, 3’ UTR intron (3UI)-containing transcripts are widespread and highly expressed in both normal tissues and cancers.ResultsHere we present and characterise a novel transcriptome assembly built from 7897 solid tumour and normal samples from The Cancer Genome Atlas. We identify thousands of 3UI-containing transcript isoforms, many of which are expressed across multiple cancer types. We find that the expression of core NMD component UPF1 negatively correlates with global 3UI splicing between normal samples, however this correlation is lost in colon cancer. We find that 3UIs found exclusively within 3’ UTRs (bona-fide3UIs) are not predominantly NMD-sensitising, unlike introns present in 3’ UTRs due to premature termination. We identify HRAS as an example where 3UI splicing rescues the transcript from NMD.Bona-fide, but not premature termination codon (PTC) carrying 3UI-transcripts are spliced more in cancer samples compared to matched normals in the majority of cancer types analysed. In colon cancer, differentially spliced 3UI-containing transcripts are enriched in the canonical Wnt signalling pathway, with CTNNB1 being the most over-spliced in colon cancer compared to normal. We show that manipulating Wnt signalling can further regulate splicing of Wnt component transcript 3’ UTRs.ConclusionsOur results indicate that 3’ UTR splicing is not a rare occurrence, especially in colon cancer, where 3’ UTR splicing regulates transcript expression in EJC-dependent and independent manners.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3