CDX2 dose-dependently influences the gene regulatory network underlying human extraembryonic mesoderm development

Author:

Bulger Emily A.ORCID,McDevitt Todd C.ORCID,Bruneau Benoit G.ORCID

Abstract

ABSTRACTProper regulation of gene dosage is critical for the development of the early embryo and the extraembryonic tissues that support it. Specifically, loss ofCdx2 in vivoleads to stunted development of the allantois, an extraembryonic mesoderm-derived structure critical for nutrient delivery and waste removal in the early embryo. In this study, we investigate how CDX2 dose-dependently influences the gene regulatory network underlying extraembryonic mesoderm development. We generate an allelic series forCDX2in human induced pluripotent stem cells (hiPSCs) consisting of WT, heterozygous, and homozygous nullCDX2genotypes, differentiate these cells in a 2D gastruloid model, and subject these cells to multiomic single nucleus RNA and ATAC sequencing. We identify several genes that CDX2 dose-dependently regulate cytoskeletal integrity and adhesiveness in the extraembryonic mesoderm population, including regulators of the VEGF, canonical WNT, and non-canonical WNT signaling pathways. Despite these dose-dependent gene expression patterns, snATAC-seq reveals that heterozygous CDX2 expression is capable of inducing a WT-like chromatin accessibility profile, suggesting accessibility is not sufficient to drive gene expression when the CDX2 dosage is reduced. Finally, because the loss of CDX2 or TBXT phenocopy one anotherin vivo, we compare differentially expressed genes in our CDX2 knock-out model to those from TBXT knock-out hiPSCs differentiated in an analogous experiment. This comparison identifies several communally misregulated genes that are critical for cytoskeletal integrity and tissue permeability, includingANK3andANGPT1. Together, these results clarify how CDX2 dose-dependently regulates gene expression in the extraembryonic mesoderm and suggest these genes may underlie the defects in vascular development and allantoic elongation seen in the absence or reduction of CDX2in vivo.Summary StatementUsing 2D human gastruloids, CDX2 is shown to dose-dependently influence genes related to tissue permeability, cell-cell adhesions, and cytoskeletal architecture during extraembryonic mesoderm development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3