Cell-material interactions in 3D bioprinted plant cells

Author:

Madison ImaniORCID,Tahir MaimounaORCID,Van den Broeck LisaORCID,Phan Linh,Horn Timothy,Sozzani RosangelaORCID

Abstract

Abstract3D bioprinting is an additive manufacturing technology with promise towards facilitating tissue engineering and single-cell investigations of cellular development and microenvironment responses. 3D bioprinting is still a new technology in the field of plant biology so its optimization with plant cells is still widely needed. Here, we present a study in which 3D bioprinting parameters, such as needle gauge, extrusion pressure, and scaffold type, were all tested in 3D bioprinted Tobacco BY-2 cells to evaluate how cell viability is responsive to each parameter. As a result, this study revealed an optimal range of extrusion pressures and needle gauges that resulted in an optimum cell viability. Furthermore, this study applied the identified optimal 3D bioprinting parameters to a different cell line,Arabidopsisroot protoplasts, and stress condition, phosphate starvation, to confirm that the identified parameters were optimal in a different species, cell type, and cellular microenvironment. This suggested that phosphate-starved bioprintedArabidopsiscells were less viable by 7 days, which was consistent with whole root phosphate starvation responses. As a result, the 3D bioprinter optimization yielded optimal cell viabilities in both BY-2 and Arabidopsis cells and facilitated an applied investigation into phosphate starvation stress.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3