Abstract
AbstractSingle cell lineage tracing, essential for unraveling cellular dynamics in disease evolution is critical for developing targeted therapies. CRISPR-Cas9, known for inducing permanent and cumulative mutations, is a cornerstone in lineage tracing. The novel homing guide RNA (hgRNA) technology enhances this by enabling dynamic retargeting and facilitating ongoing genetic modifications. Charting these mutations, especially through successive hgRNA edits, poses a significant challenge. Our solution, LINEMAP, is a computational framework designed to trace and map these mutations with precision. LINEMAP meticulously discerns mutation alleles at single-cell resolution and maps their complex interrelationships through a mutation evolution network. By utilizing a Markov Process model, we can predict mutation transition probabilities, revealing potential mutational routes and pathways. Our reconstruction algorithm, anchored in the Markov model’s attributes, reconstructs cellular lineage pathways, shedding light on the cell’s evolutionary journey to the minutiae of single-cell division. Our findings reveal an intricate network of mutation evolution paired with a predictive Markov model, advancing our capability to reconstruct single-cell lineage via hgRNA. This has substantial implications for advancing our understanding of biological mechanisms and propelling medical research forward.
Publisher
Cold Spring Harbor Laboratory