Efficient enzyme-free isolation of brain-derived extracellular vesicles

Author:

Matamoros-Angles A.ORCID,Karadjuzovic E.,Mohammadi B.ORCID,Song F.,Brenna S.,Siebels B.,Voß H.,Seuring C.,Ferrer I.,Schlüter H.,Kneussel M.,Altmeppen HC.ORCID,Schweizer M.,Puig B.ORCID,Shafiq M.,Glatzel M.ORCID

Abstract

AbstractExtracellular vesicles (EVs) have gained significant attention as pathology mediators and potential diagnostic tools for neurodegenerative diseases. However, isolation of brain-derived EVs (BDEVs) from tissue remains challenging, often involving enzymatic digestion steps that may compromise the integrity of EV proteins and overall functionality.Here, we describe that collagenase digestion, commonly used for BDEV isolation, produces undesired protein cleavage of EV-associated proteins in brain tissue homogenates and cell-derived EVs. In order to avoid this effect, we studied the possibility of isolating BDEVs with a reduced amount of collagenase or without any protease. Characterization of the isolated BDEVs revealed their characteristic morphology and size distribution with both approaches. However, we revealed that even minor enzymatic digestion induces ‘artificial’ proteolytic processing in key BDEV markers, such as Flotillin-1, CD81, and the cellular prion protein (PrPC), whereas avoiding enzymatic treatment completely preserves their integrity. We found no differences in mRNA and protein content between non-enzymatically and enzymatically isolated BDEVs, suggesting that we are purifying the same BDEV populations with both approaches. Intriguingly, the lack of Golgi marker GM130 signal, often referred to as contamination contamination-negative marker in EV preparations, seems to result from enzymatic digestion rather than from its actual absence in BDEV samples.Overall, we show that non-enzymatic isolation of EVs from brain tissue is possible and avoids artificial pruning of proteins while achieving a high BDEV yield and purity. This protocol will help to understand the functions of BDEV in a near-physiological setting, thus opening new research approaches.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3