Collective movement of schooling fish reduces locomotor cost in turbulence

Author:

Zhang YangfanORCID,Ko HungtangORCID,Calicchia Michael,Ni Rui,Lauder George V.ORCID

Abstract

AbstractThe ecological and evolutionary benefits of collective behaviours are rooted in the physical principles and physiological mechanisms underpinning animal locomotion. We propose a turbulence sheltering hypothesis that collective movements of fish schools in turbulent flow can reduce the total energetic cost of locomotion by shielding individuals from the perturbation of chaotic turbulent eddies. We test this hypothesis by quantifying energetics and kinematics in schools of giant danio (Devario aequipinnatus) compared to solitary individuals swimming under control and turbulent conditions over a wide speed range. We discovered that, when swimming at high speeds and high turbulence levels, fish schools reduced their total energy expenditure (TEE, both aerobic and anaerobic energy) by 63–79% compared to solitary fish. Solitary individuals spend ∼25% more kinematic effort (tail beat amplitude*frequency) to swim in turbulence at higher speeds than in control conditions. However, fish schools swimming in turbulence reduced their three-dimensional group volume by 41–68% (at higher speeds) and did not alter their kinematic effort compared to control conditions. This substantial energy saving highlighted a ∼261% higher TEE when fish swimming alone in turbulence are compared to swimming in a school. Schooling behaviour could mitigate turbulent disturbances by sheltering fish within schools from the eddies of sufficient kinetic energy that can disrupt the locomotor gaits. Providing a more desirable internal hydrodynamic environment could be one of the ecological drivers underlying collective behaviours in a dense fluid environment.One-Sentence SummaryThe collective movement of fish schools substantially reduces the energetic cost of locomotion in turbulence compared to that of swimming alone.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3