Inositol polyphosphate multikinase regulates Th1 and Th17 cell differentiation by controlling Akt-mTOR signaling

Author:

Yuk Chae Min,Kim Dongeon,Hong Sehoon,Kim Mingyo,Jeong Hyun-Woo,Park Seung Ju,Min Hyungyu,Kim Wooseob,Kim Sang-Gyu,Seong Rho Hyun,Kim Seyun,Lee Seung-Hyo

Abstract

AbstractActivated proinflammatory T helper (Th) cells, such as Th1 and Th17 cells, mediate immune responses against intra- and extra-cellular pathogens as well as cause the development of various autoimmune diseases. Inositol polyphosphate multikinase (IPMK) is a key enzyme essential for inositol phosphate and phosphoinositide metabolism, which is known to control major biological events such as growth; however, its role in the function of Th cells remains unclear. Here we show that the expression of IPMK is highly induced in distinct Th1 and Th17 subsets. Further, while conditional deletion of IPMK in CD4+T cells is dispensable for Th2-dependent immune responses, both Th1- and Th17-mediated immune responses are markedly diminished when this enzyme is absent resulting in reduced resistance toLeishmania majorinfection and attenuation of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. In addition, IPMK-deficient naive CD4+T cells display aberrant T cell activation and impaired differentiation into Th17 cells, which is associated with reduced activation of Akt, mechanistic target of rapamycin (mTOR), and STAT3. Mechanistically, IPMK as a phosphatidylinositol 3-kinase (PI3-kinase) controls the production of phosphatidylinositol (3,4,5)-trisphosphate, thereby promoting T cell activation, differentiation, and effector functions. Our findings suggest that IPMK acts as a critical regulator of Th1 and Th17 differentiation, highlighting the physiological importance of IPMK in Th1- and Th17-mediated immune homeostasis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3