A Wireless Wearable Ecosystem for Social Network Analysis in Free-living Animals

Author:

Gaidica MattORCID,Zhang Mengxiao,Dantzer BenORCID

Abstract

AbstractUnderstanding the dynamics of animal social systems requires studying variation in contact and interaction, which is influenced by environmental conditions, resource availability, and predation risk, among other factors. Traditional (direct) observational methods have limitations, but advancements in sensor technologies and data analytics provide unprecedented opportunities to study these complex systems in naturalistic environments. Proximity logging and tracking devices, capturing movement, temperature, and social interactions, offer non-invasive means to quantify behavior and develop empirical models of animal social networks. However, challenges remain in integrating different data types, incorporating more sensor modalities, and addressing logistical constraints. To address these gaps, we developed a wireless wearable sensor system with novel features (called “Juxta”), including modular battery packs, memory management for combining data types, reconfigurable deployment modes, and a smartphone app for data collection. We present data from a pilot study on prairie voles (Microtus ochrogaster), which is a small mammal species that exhibits relatively complex social behavior. We demonstrate the potential for Juxta to increase our understanding of the social networks and behavior of free-living animals. Additionally, we propose a framework to guide future research in merging temporal, spatial, and event-driven data. By leveraging wireless technology, battery efficiency, and smart sensing modalities, our wearable ecosystem offers a scalable solution for real-time, high-resolution data capture and analysis in animal social network studies, opening new avenues for exploring complex social dynamics across species and environments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3