Abstract
AbstractMulti-photon 3D laser printing has gathered much attention in recent years as a means of manufacturing biocompatible scaffolds that can modify and guide cellular behaviorin vitro. However,in vivotissue engineering efforts have been limited so far to the implantation of beforehand 3D printed biocompatible scaffolds andin vivobioprinting of tissue constructs from bioinks containing cells, biomolecules, and printable hydrogel formulations. Thus, a comprehensive 3D laser printing platform forin vivoandin situmanufacturing of microimplants raised from synthetic polymer-based inks is currently missing.Here we present a platform for minimal-invasive manufacturing of microimplants directly in the organism by one-photon photopolymerization and multi-photon 3D laser printing. Employing a commercially available elastomeric ink giving rise to biocompatible synthetic polymer-based microimplants, we demonstrate first applicational examples of biological responses toin situprinted microimplants in the teleost fishOryzias latipesand in embryos of the fruit flyDrosophila melanogaster. This provides a framework for future studies addressing the suitability of inks forin vivo3D manufacturing. Our platform bears great potential for the direct engineering of the intricate microarchitectures in a variety of tissues in model organisms and beyond.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献