For antibody sequence generative modeling, mixture models may be all you need

Author:

Parkinson JonathanORCID,Wang Wei

Abstract

ABSTRACTAntibody therapeutic candidates must exhibit not only tight binding to their target but also good developability properties, especially low risk of immunogenicity. In this work, we fit a simple generative model, SAM, to sixty million human heavy and seventy million human light chains. We show that the probability of a sequence calculated by the model distinguishes human sequences from other species with the same or better accuracy on a variety of benchmark datasets containing >400 million sequences than any other model in the literature, outperforming large language models (LLMs) by large margins. SAM can humanize sequences, generate new sequences, and score sequences for humanness. It is both fast and fully interpretable. Our results highlight the importance of using simple models as baselines for protein engineering tasks. We additionally introduce a new tool for numbering antibody sequences which is orders of magnitude faster than existing tools in the literature. Both these tools are available athttps://github.com/Wang-lab-UCSD/AntPack.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3