The role of chromatin state in intron retention: a case study in leveraging large scale deep learning models

Author:

Daoud Ahmed,Ben-Hur AsaORCID

Abstract

Complex deep learning models trained on very large datasets have become key enabling tools for current research in natural language processing and computer vision. By providing pre-trained models that can be fine-tuned for specific applications, they enable researchers to create accurate models with minimal effort and computational resources. Large scale genomics deep learning models come in two flavors: the first are large language models of DNA sequences trained in a self-supervised fashion, similar to the corresponding natural language models; the second are supervised learning models that leverage large scale genomics datasets from ENCODE and other sources. We argue that these models are the equivalent of foundation models in natural language processing in their utility, as they encode within them chromatin state in its different aspects, providing useful representations that allow quick deployment of accurate models of gene regulation. We demonstrate this premise by leveraging the recently created Sei model to develop simple, interpretable models of intron retention, and demonstrate their advantage over models based on the DNA langauage model DNABERT-2. Our work also demonstrates the impact of chromatin state on the regulation of intron retention. Using representations learned by Sei, our model is able to discover the involvement of transcription factors and chromatin marks in regulating intron retention, providing better accuracy than a recently published custom model developed for this purpose.

Publisher

Cold Spring Harbor Laboratory

Reference35 articles.

1. CTCF as a regulator of alternative splicing: new tricks for an old player

2. “Effective gene expression prediction from sequence by integrating longrange interactions;Nature methods,2021

3. “Coordinating regulation of gene expression in cardiovascular disease: interactions between chromatin modifiers and transcription factors;Frontiers in cardiovascular medicine,2017

4. Rishi Bommasani et al. “On the opportunities and risks of foundation models”. In: arXiv preprint arXiv:2108.07258 (2021).

5. “Language models are few-shot learners;Advances in neural information processing systems,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3