On the lipid dependence of bacterial mechanosensitive channel gating in situ

Author:

Britt Madolyn,Sawasato Katsuhiro,Moller Elissa,Kidd Gerald,Bogdanov Mikhail,Sukharev SergeiORCID

Abstract

AbstractFor bacterial mechanosensitive channels acting as turgor-adjusting osmolyte release valves, membrane tension is the primary stimulus driving opening transitions. Because tension is transmitted through the surrounding lipid bilayer, it is possible that the presence or absence of different lipid species may influence the function of these channels. In this work, we characterize the lipid dependence of chromosome-encoded MscS and MscL in E. coli strains with genetically altered lipid composition. We use two previously generated strains that lack one or two major lipid species (PE, PG, or CL) and engineer a third strain that is highly enriched in CL due to the presence of hyperactive cardiolipin synthase ClsA. We characterize the functional behavior of these channels using patch-clamp and quantify the relative tension midpoints, closing rates, inactivation depth, and the rate of recovery back to the closed state. We also measure the osmotic survival of lipid-deficient strains, which characterizes the functional consequences of lipid-mediated channel function at the cell level. We find that the opening and closing behavior of MscS and MscL tolerate the absence of specific lipid species remarkably well. The lack of cardiolipin (CL), however, reduces the active MscS population relative to MscL and decreases the closing rate, slightly increasing the propensity of MscS toward inactivation and slowing the recovery process. The data points to the robustness of the osmolyte release system and the importance of cardiolipin for the adaptive behavior of MscS.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3