Long-horizon associative learning explains human sensitivity to statistical and network structures in auditory sequences

Author:

Benjamin LucasORCID,Sablé-Meyer MathiasORCID,Fló Ana,Dehaene-Lambertz GhislaineORCID,Roumi Fosca AlORCID

Abstract

AbstractNetworks are a useful mathematical tool for capturing the complexity of the world. In a previous behavioral study, we showed that human adults were sensitive to the high-level network structure underlying auditory sequences, even when presented with incomplete information. Their performance was best explained by a mathematical model compatible with associative learning principles, based on the integration of the transition probabilities between adjacent and non-adjacent elements with a memory decay. In the present study, we explored the neural correlates of this hypothesis via magnetoencephalography (MEG). Participants passively listened to sequences of tones organized in a sparse community network structure comprising two communities. An early difference (~150 ms) was observed in the brain responses to tone transitions with similar transition probability but occurring either within or between communities. This result implies a rapid and automatic encoding of the sequence structure. Using time-resolved decoding, we estimated the duration and overlap of the representation of each tone. The decoding performance exhibited exponential decay, resulting in a significant overlap between the representations of successive tones. Based on this extended decay profile, we estimated a long-horizon associative learning novelty index for each transition and found a correlation of this measure with the MEG signal. Overall, our study sheds light on the neural mechanisms underlying human sensitivity to network structures and highlights the potential role of Hebbian-like mechanisms in supporting learning at various temporal scales.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3