Sac1 links phosphoinositide turnover to cryptococcal virulence

Author:

Gaylord Elizabeth A.ORCID,Choy Hau LamORCID,Chen Guohua,Briner Sydney L.ORCID,Doering Tamara L.ORCID

Abstract

ABSTRACTCryptococcus neoformansis an environmentally-acquired fungal pathogen that causes over 140,000 deaths per year. Cryptococcal infection occurs when infectious particles are deposited into the lung, where they encounter host phagocytic cells.C. neoformansmay be engulfed by these phagocytes, an important step of infection that leads to outcomes ranging from termination of infection to cryptococcal dissemination. To study this critical process, we screened approximately 4,700 cryptococcal gene deletion mutants for altered uptake, using primary mouse and human phagocytic cells. Among the hits of these two screens, we identified 93 mutants with perturbed uptake in both systems, as well as others with differences in uptake by only one cell type. We further screened the hits for changes in thickness of the capsule, a protective polysaccharide layer around the cell which is an important cryptococcal virulence factor. The combination of our three screens yielded 45 mutants, including one lacking the phosphatidylinositol-4-phosphate phosphatase Sac1. In this work, we implicate Sac1 in both host cell uptake and capsule production. We found thatsac1mutants exhibit lipid trafficking defects, reductions in secretory system function, and changes in capsule size and composition. Many of these changes occur specifically in tissue culture media, highlighting the role of Sac1 phosphatase activity in responding to the stress of host-like conditions. Overall, these findings show how genome-scale screening can identify cellular factors that contribute to our understanding of cryptococcal biology and demonstrate the role of Sac1 in determining fungal virulence.IMPORTANCECryptococcus neoformansis a fungal pathogen with significant impact on global health. Cryptococcal cells inhaled from the environment are deposited into the lungs, where they first contact the human immune system. The interaction betweenC. neoformansand host cells is critical because this step of infection can determine whether the fungal cells die or proliferate within the human host. Despite the importance of this stage of infection, we have limited knowledge of cryptococcal factors that influence its outcome. In this study, we identify cryptococcal genes that affect uptake by both human and mouse cells. We also identify mutants with altered capsule, a protective coating that surrounds the cells to shield them from the host immune system. Finally, we characterize the role of one gene,SAC1, in these processes. Overall, this study contributes to our understanding of howC. neoformansinteracts with and protects itself from host cells.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3