Delineation of signaling routes that underlie differences in macrophage phenotypic states

Author:

Totu TiberiuORCID,Bossart JonasORCID,Hast KatharinaORCID,Li ChenORCID,Rottmar MarkusORCID,Sobottka BettinaORCID,Yu GuocanORCID,Ayala-Nunez VanesaORCID,Buljan MarijaORCID

Abstract

AbstractMacrophages represent a major immune cell type in tumor microenvironments, they exist in multiple functional states and are of a strong interest for therapeutic reprogramming. While signaling cascades defining pro-inflammatory macrophages are better characterized, pathways that drive polarization in immunosuppressive macrophages are incompletely mapped. Here, we performed an in-depth characterization of signaling events in primary human macrophages in different functional states using mass spectrometry-based proteomic and phosphoproteomic profiling. Analysis of direct and indirect footprints of kinase activities has suggested PAK2 and PKCα kinases as important regulators ofin vitroimmunosuppressive macrophages (IL-4/IL-13 or IL-10 stimulated). Network integration of these data with the corresesponding transcriptome profiles has further highlighted FOS and NCOR2 as central transcription regulators in immunosuppressive states. Furthermore, we retrieved single cell sequencing datasets for tumors from cancer patients and found that the unbiased signatures identified here through proteomic analysis were able to successfully separate pro-inflammatory macrophage populations in a clinical setting and could thus be used to expand state-specific markers. This study contributes to in-depth multi-omics characterizations of macrophage phenotypic landscapes, which could be valuable for assisting future interventions that therapeutically alter immune cell compartments.Abstract FigureHighlightsGlobal proteomic characterization of primary human macrophages in different statesMapping of main signaling events through in-depth data analysisPKCα and PAK2 kinases are important regulators of immunosuppressive macrophagesProteomic signatures enable accurate detection of pro-inflammatory macrophages in patient tumors

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3