Predicting brain age across the adult lifespan with spontaneous oscillations and functional coupling in resting brain networks captured with magnetoencephalography

Author:

Hardy Samuel,Roberts Gill,Ventresca Matthew,Dunkley Benjamin TORCID

Abstract

AbstractThe functional repertoire of the human brain changes dramatically throughout the developmental trajectories of early life and even all the way throughout the adult lifespan into older age. Capturing this arc is important to understand healthy brain ageing, and conversely, how injury and diseased states can lead to accelerated brain ageing. Regression modelling using lifespan imaging data can reliably predict an individual’s brain age based on expected arcs of ageing. One feature of brain function that is important in this respect, and understudied to date, is neural oscillations - the rhythmic fluctuations of brain activity that index neural cell assemblies and their functioning, as well as coordinating information flow around networks. Here, we analysed resting-state magnetoencephalography (MEG) recordings from 367 healthy participants aged 18 to 83, using two distinct statistical approaches to link neural oscillations & functional coupling with that of healthy ageing. Spectral power and leakage-corrected amplitude envelope correlations were calculated for each canonical frequency band from delta through gamma ranges. Spatially and spectrally consistent associations between healthy ageing and neurophysiological features were found across the applied methods, showing differential effects on neural oscillations, with decreasing amplitude of low frequencies throughout the adult lifespan, and increasing high frequency amplitude. Functional connectivity within and between resting-state brain networks mediated by alpha coupling generally decreased throughout adulthood and increased in the beta band. Predictive modelling of brain age via regression showed an age dependent prediction bias resulting in overestimating the age of younger people (<40 years old) and underestimating the age of older individuals. These findings evidence strong age-related neurophysiological changes in oscillatory activity and functional networks of the brain as measured by resting-state MEG and that cortical oscillations are moderately reliable markers for predictive modelling. For researchers in the field of predictive brain age modelling with neurophysiological data, we recommend attention is paid to predictive biases for younger and older age ranges and consider using specific models for different age brackets. Nevertheless, these results suggest brain age prediction from MEG data can be used to model arcs of ageing throughout the adult lifespan and predict accelerated ageing in pathological brain states.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3