A new protocol for multispecies bacterial infections in zebrafish and their monitoring through automated image analysis

Author:

Schmitz Désirée A.ORCID,Wechsler Tobias,Li Hongwei BranORCID,Menze BjoernORCID,Kümmerli Rolf

Abstract

The zebrafishDanio reriohas become a popular model host to explore disease pathology caused by infectious agents. A main advantage is its transparency at an early age, which enables live imaging of infection dynamics. While multispecies infections are common in patients, the zebrafish model is rarely used to study them, although the model would be ideal for investigating pathogen-pathogen and pathogen-host interactions. This may be due to the absence of an established multispecies infection protocol for a defined organ and the lack of suitable image analysis pipelines for automated image processing. To address these issues, we developed a protocol for establishing and tracking single and multispecies bacterial infections in the inner ear structure (otic vesicle) of the zebrafish by imaging. Subsequently, we generated an image analysis pipeline that involved deep learning for the automated segmentation of the otic vesicle, and scripts for the quantification of pathogen frequencies through fluorescence intensity measures. We usedPseudomonas aeruginosa, Acinetobacter baumannii, andKlebsiella pneumoniae, three of the difficult-to-treat ESKAPE pathogens, to show that our infection protocol and image analysis pipeline work both for single pathogens and pairwise pathogen combinations. Thus, our protocols provide a comprehensive toolbox for studying single and multispecies infections in real-time in zebrafish.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3