scRNA-seq reveals persistent aberrant differentiation of nasal epithelium driven by TNFα and TGFβ in post-COVID syndrome

Author:

Fähnrich A.ORCID,Reddy K.D.ORCID,Ott F.ORCID,Maluje Y.,Saurabh R.,Schaaf A.,Winkelmann S.,Voß B.,Laudien M.,Bahmer T.ORCID,Heyckendorf Jan,Brinkmann F.ORCID,Schreiber S.,Lieb W.ORCID,Weckmann M.ORCID,Busch H.ORCID

Abstract

AbstractPost-COVID syndrome (PCS) currently affects approximately 3-17% of people following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and has the potential to become a significant global health burden. PCS presents with various symptoms, and methods for improved PCS assessment are presently developed to guide therapy. Nevertheless, there are few mechanistic insights and treatment options. Here, we performed single-cell RNA transcriptomics on nasal biopsies from 33 patients suffering from PCS with mild, moderate, or severe symptoms. We identified 17 different cell clusters representing 12 unique cell populations, including all major epithelial cell types of the conducting airways and basal, secretory, and ciliated cells. Severe PCS was associated with decreased numbers of ciliated cells and the presence of immune cells. Ensuing inflammatory signaling upregulated TGFβ and induced an epithelial-mesenchymal transition, which led to the high abundance of basal cells and a mis-stratified epithelium. We confirmed the resultsin vitrousing an air-liquid interface culture and validated TNFα as the causal inflammatory cytokine. In summary, our results show that one mechanism for sustained PCS is not through continued viral load, but through the presence of immune cells in nasal tissue leading to impaired mucosal barrier function and repeated infections. These findings could be further explored as a therapeutic option akin to other chronic inflammatory diseases by inhibiting the TNFα-TGFβ axis, restoring the nasal epithelium, and reducing respiratory tract-related infections.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3