Abstract
AbstractThe mechanism of nacre formation in gastropods involves a vesicular system that transports organic and mineral precursors from the mantle epithelium to the mineralization chamber. Between them lies the surface membrane, a thick organic structure that covers the mineralization chamber and the forming nacre. The surface membrane is a dynamic structure that grows by the addition of vesicles on the outer side and recedes by the formation of surface membranes on the inner side. By using a combination of electron microscopy imaging and spectroscopy, we have monitored the journey of the vesicles from the mantle epithelium to the mineralization chamber, focusing on the elemental composition of the organic structures at each stage. Our data reveals that transport occurs in lipid bilayer vesicles through exocytosis from the mantle epithelium. After release within the surface membrane, chitin undergoes a process of self-assembly and interaction with proteins, resulting in progressive changes of the internal structure of the surface membrane until the final structure of interlamellar membranes is acquired. Finally, these detach from the inner side of the surface membrane. Elemental analysis revealed the transport of a considerable amount of calcium bound to proteins, likely forming calcium-protein complexes.
Publisher
Cold Spring Harbor Laboratory