Activity-Dependent Ectopic Spiking in Parvalbumin-Expressing Interneurons of the Neocortex

Author:

Theyel Brian B.ORCID,Stevenson Rachel J.,Connors Barry W.

Abstract

ABSTRACTCanonically, action potentials of most mammalian neurons initiate at the axon initial segment and propagate bidirectionally: orthodromically along the distal axon, and retrogradely into the soma and dendrites. Under some circumstances action potentials may initiate ectopically, at sites distal to the axon initial segment, and propagate antidromically along the axon. These ‘ectopic action potentials’ (EAPs) have been observed in experimental models of seizures and chronic pain, and more rarely in nonpathological forebrain neurons. Here we report that a large majority of parvalbumin-expressing (PV+) interneurons in upper layers of mouse neocortex, from both orbitofrontal and primary somatosensory areas, fire EAPs after sufficient activation of their somata. Somatostatin-expressing interneurons also fire EAPs, though less robustly. Ectopic firing in PV+ cells occurs in varying temporal patterns and can persist for several seconds. PV+ cells evoke strong synaptic inhibition in pyramidal neurons and interneurons and play critical roles in cortical function. Our results suggest that ectopic spiking of PV+ interneurons is common, and may contribute to both normal and pathological network functions of the neocortex.SIGNIFICANCE STATEMENTA form of neuronal firing that emerges in distal axons and terminals – the ‘ectopic action potential’ (EAP) – has been detected in a few cell populations of the cerebral cortex. Previous investigations of parvalbumin-positive interneurons in neocortex had suggested only a small percentage of cells can fire EAPs. We found that a large fraction of parvalbumin-positive interneurons in the superficial layers of neocortex, including first-order and higher-order areas, can fire EAPs. These results broaden our understanding of the intrinsic firing characteristics of these critically important inhibitory interneurons.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3