Differential growth and transcriptomic profile of stem cell-derived midbrain astrocytes

Author:

Li ZongzeORCID,Cardo Lucia Fernandez,Rokicki Michal,Monzón-Sandoval JimenaORCID,Volpato Viola,Wessely FrankORCID,Webber CalebORCID,

Abstract

AbstractRegional specificity of stem cell-derived astrocytes is believed to be an important prerequisite for their applications in disease modelling and cell-based therapies. The regional identity of these astrocytes is often defined by the positional characteristics of their antecedent, stem cell-derived neural progenitors patterned to a fate of interest, with the assumption that the positional specification is to be preserved by the derived astrocytes. Using a human induced pluripotent stem cell line designed for tracing midbrain floor plate derivatives, here we show that lineage composition of the derived astrocytes is not a faithful recapitulation of the founder progenitor population, as demonstrated by the loss of floor plate differentiated progeny in the final astrocyte products. Using deep single cell RNA sequencing, we identified distinct transcriptomic signatures of midbrain floor plate-derived astrocytes. Our study highlights the need for rigorous characterisation of pluripotent stem cell-derived regional astrocytes and provides a valuable resource for assessing midbrain floor plate-derived human astrocytes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3