StaVia: Spatially and temporally aware cartography with higher order random walks for cell atlases

Author:

Stassen Shobana V.ORCID,Kobashi Minato,Huang YuanhuaORCID,Ho Joshua W. K.,Tsia Kevin K.ORCID

Abstract

AbstractSingle-cell atlases are critical for unraveling the cellular basis of health and disease, yet their sheer diversity and vast data landscape in time and space pose daunting computational challenges pertaining to the delineation of multiple simultaneously emerging lineages, the integration of spatial and temporal information, and the visualization of trajectories across large atlases with enough resolution to observe localized transitions. To tackle this intricacy, we introduce StaVia, a computational framework that synergizes multi-faceted single-cell data—spanning time-series data, spatial gene expression patterns, and directional trends from RNA velocity— with higher-order random walks that leverage the memory of cells’ past states. StaVia fuses this method with a cartographic “Atlas View” that offers intuitive graph visualization, simultaneously capturing the nuanced details of cellular development at single-cell resolution as well as the broader connectivity of cell lineages, avoiding common pitfalls of merged distinct trajectories or missed transitional states seen in existing methods which are all memoryless. Notably, we demonstrate that StaVia unlocks new insights into placode development, radial glia pluripotency during neurulation, and the transitions pivotal to these processes in a large-scale Zebrafish developmental atlas. StaVia also allows spatially aware cartography that captures relationships between cell populations based on their spatial location as well as their gene expressions in a MERFISH dataset - underscoring its potential to dissect complex biological landscapes in both spatial and temporal contexts.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3