FtsZ-mediated spatial-temporal control over septal cell wall synthesis

Author:

Hu Longhua,Perez Amilcar,Nesterova Tanya,Lyu ZhixinORCID,Yahashiri Atsuhi,Weisss David S.,Xiao JieORCID,Liu JianORCID

Abstract

AbstractFtsZ, the tubulin-like GTPase, is the central organizer of the bacterial divisome, a macromolecular complex that synthesizes new septal cell wall and degrades old septal cell wall (made of septal peptidoglycan, sPG) to allow cell wall constriction and cytokinesis. InE. coli, it is well accepted that 1) FtsZ recruits all essential divisome proteins to the septum, including the core sPG synthase complex, FtsWI/QLB and its activator, FtsN; 2) FtsWI/QLB must complex with FtsN to produce sPG under the wild-type background; and 3) the Brownian ratcheting by treadmilling FtsZ polymers drives the directional movements of sPG synthase proteins along the septum circumference; and 4) FtsZ is essential for the early stage, but dispensable for the late stage of cell wall constriction. However, it remains unclear how FtsZ spatial-temporally organizes the divisome for robust bacterial cytokinesis throughout cell wall constriction process. Combining theoretical modeling with experiments inE. coli, we show that at the early stage during cell division, the Brownian ratcheting by FtsZ treadmilling acts both as a template to corral FtsWI/QLB and FtsN into close contacts for FtsWI/QLB-FtsN complex formation and as a conveyor to maximally homologize the septal distribution of sPG synthesis activities to avoid uneven cell wall constriction. When the septum constricts progressively, the FtsN septal density increases via binding to denuded sPG; consequently, the denuded PG-bound FtsN serves as the template to activate FtsWI/QLB for continued sPG synthesis, rendering FtsZ dispensable. Our work establishes an overarching framework that FtsZ spatial-temporally controls over septal cell wall constriction.SignificanceBacteria utilize FtsZ, the tubulin-like GTPase, to organize cell wall enzymes during cell division. FtsZ forms treadmilling polymers along the septum circumference and drives the directional movement of cell wall enzymes for robust cell wall constriction. How this role is achieved is unclear. We show that FtsZ treadmilling acts both as a template to corral cell wall enzymes into close contacts for priming and as a conveyor to homologize the septal distribution of cell wall synthesis activities for even septum constriction. These roles evolve at different stages of cell division and are modulated differentially by different bacteria; they likely define an overarching principle for robust cell division across the microbial world.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3