Staphylococcus aureuscounters organic acid anion-mediated inhibition of peptidoglycan cross-linking through robust alanine racemase activity

Author:

Panda Sasmita,Jayasinghe Yahani P.,Shinde Dhananjay D.,Bueno Emilio,Stastny Amanda,Bertrand Blake P.,Chaudhari Sujata S.,Kielian Tammy,Cava FelipeORCID,Ronning Donald R.,Thomas Vinai C.ORCID

Abstract

AbstractWeak organic acids are commonly found in host niches colonized by bacteria, and they can inhibit bacterial growth as the environment becomes acidic. This inhibition is often attributed to the toxicity resulting from the accumulation of high concentrations of organic anions in the cytosol, which disrupts cellular homeostasis. However, the precise cellular targets that organic anions poison and the mechanisms used to counter organic anion intoxication in bacteria have not been elucidated. Here, we utilize acetic acid, a weak organic acid abundantly found in the gut to investigate its impact on the growth ofStaphylococcus aureus. We demonstrate that acetate anions bind to and inhibit D-alanyl-D-alanine ligase (Ddl) activity inS. aureus. Ddl inhibition reduces intracellular D-alanyl-D-alanine (D-Ala-D-Ala) levels, compromising staphylococcal peptidoglycan cross-linking and cell wall integrity. To overcome the effects of acetate-mediated Ddl inhibition,S. aureusmaintains a high intracellular D-Ala pool through alanine racemase (Alr1) activity and additionally limits the flux of D-Ala to D-glutamate by controlling D-alanine aminotransferase (Dat) activity. Surprisingly, themodus operandiof acetate intoxication inS. aureusis common to multiple biologically relevant weak organic acids indicating that Ddl is a conserved target of small organic anions. These findings suggest thatS. aureusmay have evolved to maintain high intracellular D-Ala concentrations, partly to counter organic anion intoxication.SignificanceUnder mildly acidic conditions, weak organic acids like acetic acid accumulate to high concentrations within the cytosol as organic anions. However, the physiological consequence of organic anion accumulation is poorly defined. Here we investigate how the acetate anion impactsS. aureus. We show that acetate anions directly bind Ddl and inhibit its activity. The resulting decrease in intracellular D-Ala-D-Ala pools impacts peptidoglycan integrity. Since acetate is a weak inhibitor of Ddl, mechanisms that maintain a high intracellular D-Ala pools are sufficient to counter the effect of acetate-mediated Ddl inhibition inS. aureus.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3