Mountain pine beetle spread in forests with varying host resistance

Author:

Brush MicahORCID,Lewis Mark A.ORCID

Abstract

AbstractIn the last few decades, mountain pine beetle (MPB) have spread into novel regions in Canada. An important aspect seldom captured in models of MPB spread is host resistance. Lodgepole pine, the predominant host of MPB, varies in resistance across the landscape. There is evidence for a genetic component of resistance, as well as evidence that hosts in areas where MPB has not been present historically are at risk of increased susceptibility. In addition to the spatially varying resistance of the primary host species, the eastward spread of MPB has brought them into jack pine forests. Host resistance in jack pine remains uncertain, but experiments indicate jack pine could be a suitable host. We develop a model of pine beetle spread that links pine beetle population dynamics and forest structure and resistance. We find that beetle outbreaks in the model are characterized by large transient outbreaks that move through the forest. We show how the speed of these outbreaks changes with host resistance and find that biologically plausible values for host resistance are able to stop the wave from advancing. We also find that near the threshold of resistance where the wave is able to advance, small changes in host resistance dramatically decrease the severity of the outbreak. These results indicate that planting trees selected for higher MPB resistance on the landscape may be able to slow or even stop the local spread of MPB. In terms of further eastward spread, our results indicate future outbreaks may move more quickly and be more severe if novel lodgepole pine hosts are indeed more susceptible to beetle attacks, although more research is needed into the susceptibility of jack pine.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3