CD4 T cell contact drives macrophage cell cycle progression and susceptibility to lentiviral transduction

Author:

Mlcochova Petra,Heilig Raphael,Fischer RomanORCID,Gupta Ravindra K.ORCID

Abstract

AbstractMacrophages are typically quiescent cells residing in G0, though tissue macrophages have been shown to proliferate locally in tissues; we previously demonstrated that differentiated monocyte derived macrophages (MDM) can be stimulated to re-enter G1 phase of the cell cycle from G0, without cell division. Entry into G1 correlates with an increase in CDK1 expression which phosphorylates the deoxynucleotide-triphosphate hydrolase SAMHD1 at position 592. SAMHD1 not only regulates cellular dNTP levels, but is also a restriction factor for virus replication of HIV-1 and DNA viruses. Here we show that contact with autologous CD4 T cells leads to antigen-independent macrophage cell cycle progression from G0-G1, accompanied by expression of cell cycle associated proteins, including CDK1, and the activation of the canonical MEK-ERK pathway. Further, macrophage cell cycle progression can be blocked not only by anti-cancer drugs targeting the MEK-ERK axis such as Palcociclib, but also by pre-treatment with EGFR antibody, providing additional evidence for cell surface interactions driving proliferative responses. Cell contact with uninfected CD4 T cells renders macrophages ten-fold more susceptible to transduction with VSV-G pseudotyped HIV-1 particles.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3