Pyruvate metabolism dictates fibroblast sensitivity to GLS1 inhibition during fibrogenesis

Author:

Contento GregORCID,Wilson Jo-Anne A,Selvarajah BrinthaORCID,Platé ManuelaORCID,Guillotin DelphineORCID,Morales Valle,Trevisani MarcelloORCID,Pitozzi Vanessa,Bianchi KatiusciaORCID,Chambers Rachel C

Abstract

AbstractFibrosis is a chronic disease characterized by excessive extracellular matrix (ECM) production which leads to destruction of normal tissue architecture and disruption of organ function. Fibroblasts are key effector cells of this process and respond to a host of pro-fibrotic stimuli, including notably the pleiotropic cytokine, TGF-β1, which promotes fibroblast to myofibroblast differentiation. This is accompanied by the simultaneous rewiring of metabolic networks to meet the biosynthetic and bioenergetic needs of contractile and ECM-synthesizing cells, but the exact mechanisms involved remain poorly understood. In this study, we report that extracellular nutrient availability profoundly influences the TGF-β1transcriptome of primary human lung fibroblasts (pHLFs) and the “biosynthesis of amino acids” emerges as a top enriched transcriptional module influenced by TGF-β1. We subsequently uncover a key role for pyruvate in influencing the pharmacological impact of glutaminase (GLS1) inhibition during TGF-β1-induced fibrogenesis. In pyruvate replete conditions which mimic the physiological concentration of pyruvate in human blood, GLS1 inhibition is ineffective in blocking TGF-β1-induced fibrogenesis, as pyruvate is able to be used as the substrate for glutamate and alanine production via glutamate dehydrogenase (GDH) and glutamic-pyruvic transaminase 2 (GPT2), respectively. We further show that dual targeting of either GPT2 or GDH in combination with GLS1-inhibition is required to fully block TGF-β1-induced collagen synthesis. These findings embolden a therapeutic strategy aimed at additional targeting of mitochondrial pyruvate metabolism in the presence of a glutaminolysis inhibitor in order to interfere with the pathological deposition of collagen in the setting of pulmonary fibrosis and potentially other fibrotic conditions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3