Author:
Caffrey Michael,Jayakumar Nitin,Caffrey Veronique,Anirudan Varada,Rong Lijun,Paprotny Igor
Abstract
AbstractThe recent COVID-19 pandemic has underscored the danger of airborne viral pathogens. The lack of model systems to study airborne pathogens limits the understanding of airborne pathogen distribution, as well as potential surveillance and mitigation strategies. In this work, we develop a novel model system to study airborne pathogens using virus like particles (VLP). Specifically, we demonstrate the ability to aerosolize VLP and detect and quantify aerosolized VLP RNA by Reverse Transcription-Loop-Mediated Isothermal Amplification (RT-LAMP) in real-time fluorescent and colorimetric assays. Importantly, the VLP model presents many advantages for the study of airborne viral pathogens: (i) similarity in size and surface components; (ii) ease of generation and noninfectious nature enabling study of BSL3 and BSL4 viruses; (iii) facile characterization of aerosolization parameters; (iv) ability to adapt the system to other viral envelope proteins including those of newly discovered pathogens and mutant variants; (v) the ability to introduce viral sequences to develop nucleic acid amplification assays.ImportanceStudy and detection of airborne pathogens is hampered by the lack of appropriate model systems. In this work we demonstrate that noninfectious Virus Like Particles (VLP) represent attractive models to study airborne viral pathogens. Specifically, VLP are readily prepared, are similar in size and composition to infectious viruses, and are amenable to highly sensitive nucleic acid amplification techniques.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献