Improving Nitrofurantoin Resistance Prediction inEscherichia colifrom Whole Genome Sequence by Integrating NfsA/B Enzyme Assays

Author:

Dulyayangkul Punyawee,Sealey Jordan E,Lee Winnie WY,Satapoomin Naphat,Reding Carlos,Heesom Kate J.,Williams Philip B,Avison Matthew B

Abstract

AbstractNitrofurantoin resistance inEscherichia coliis primarily caused by mutations damaging two enzymes, NfsA and NfsB. Studies based on small isolate collections with defined nitrofurantoin MICs have found significant random genetic drift innfsAandnfsBmaking it extremely difficult to predict nitrofurantoin resistance from whole genome sequence (WGS) where both genes are not obviously disrupted by nonsense or frameshift mutations or insertional inactivation. Here we report a WGS survey of 200E. colifrom community urine samples, of which 34 were nitrofurantoin resistant. We characterised individual non-synonymous mutations seen innfsAandnfsBamong this collection using complementation cloning and assays of NfsA/B enzyme activity in cell extracts. We definitively identified R203C, H11Y, W212R, A112E, A112T and A122T in NfsA and R121C, Q142H, F84S, P163H, W46R, K57E and V191G in NfsB as amino acid substitutions that reduce enzyme activity sufficiently to cause resistance. In contrast, E58D, I117T, K141E, L157F, A172S, G187D and A188V in NfsA and G66D, M75I, V93A and A174E in NfsB, are functionally silent in this context. We identified that 9/166 (5.4%) of nitrofurantoin susceptible isolates were “pre-resistant”, defined as having loss of function mutations innfsAornfsB. Finally, using NfsA/B enzyme activity assay and proteomics we demonstrated that 9/34 (26.5%) of nitrofurantoin resistant isolates carried functionally wild-typenfsBornfsB/nfsA. In these cases, enzyme activity was reduced through downregulated gene expression. Our biological understanding of nitrofurantoin resistance is greatly improved by this analysis, but is still insufficient to allow its reliable prediction from WGS data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3