Polycomb Repressive Complex 1.1 Component, BCOR, Promotes Syncytiotrophoblast Differentiation in Mice and Humans

Author:

Sadowski Danielle,Corcoran Connie M.,Abdi Riyan,Zheng Teng,Okae Hiroaki,Arima Takahiro,Bardwell Vivian J.,Gearhart Micah D.ORCID

Abstract

AbstractEarly defects in placenta development are thought to underlie a range of adverse pregnancy conditions including miscarriage, fetal growth abnormalities, preeclampsia, and stillbirth. Differentiating trophoblast stem cells undergo a choreographed allocation of syncytiotrophoblast and extravillous trophoblast cells in response to signaling cues from the developing fetus and the uterine environment. The expression and activity of transcription factors and chromatin modifying enzymes change during differentiation to appropriately reshape the chromatin landscape in each cell type. We have previously found in mice that extraembryonic loss of BCOR, a conserved component of the epigenetic silencing complex Polycomb Repressive Complex 1.1 (PRC1.1), leads to a reduced labyrinth and expanded trophoblast giant cell population in the placenta. Molecular analysis of wild-type and BCOR loss-of-function male and female placentas by RNA-seq identified gene expression changes as early as E6.5. We found that BCOR is required to down regulate stem cell genes and repress factors that promote alternate lineages which leads to reduced levels of syncytiotrophoblasts. ChIP-seq experiments identified a number of directly bound functional targets includingPdgfaandWnt7b. In humans,BCORis mutated in X-linked syndromes involving fetal growth restriction and females with a heterozygous null mutation inBCORcan experience recurrent miscarriages. To establish a direct role forBCORin human placental development, we used CRISPR/Cas9 to knockoutBCORin male (CT29) and female (CT30) human trophoblast stem cells. Mutant cell lines retained capacity for induced differentiation into syncytiotrophoblast and extravillous trophoblasts and exhibited minimal changes in gene expression. However, in 3D cell culture using trophoblast organoid media,BCORknockout lines had significantly altered gene expression including homologs of stem cell genes upregulated inBcorknockout mice. CUT&RUN experiments in self-renewing and 3D cell culture identified genes directly bound by BCOR. Single cell profiling of wild type, knockout, and a P85L pathogenic knock-inBCORmutation showed a reduced capacity to differentiate into syncytiotrophoblasts after four days of differentiation. Together, these results suggest that BCOR is a conserved regulator of trophoblast development that represses stem cell genes during differentiation and maintains lineage fidelity by repressing genes that promote alternate cell fates.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3