Single cell proteomics by mass spectrometry reveals deep epigenetic insight and new targets of a class specific histone deacetylase inhibitor

Author:

Orsburn Benjamin C.ORCID

Abstract

AbstractEpigenetic programming has been shown to play a role in nearly every human system and disease where anyone has thought to look. However, the levels of heterogeneity at which epigenetic or epiproteomic modifications occur at single cell resolution across a population remains elusive. While recent advances in sequencing technology have allowed between 1 and 3 histone post-translational modifications to be analyzed in each single cell, over twenty separate chemical PTMs are known to exist, allowing thousands of possible combinations. Single cell proteomics by mass spectrometry (SCP) is an emerging technology in which hundreds or thousands of proteins can be directly quantified in typical human cells. As the proteins detected and quantified by SCP are heavily biased toward proteins of highest abundance, chromatin proteins are an attractive target for analysis. To this end, I applied SCP to the analysis of cancer cells treated with mocetinostat, a class specific histone deacetylase inhibitor. I find that 16 PTMs can be confidently identified and localized with high site specificity in single cells. In addition, the high abundance of histone proteins allows higher throughput methods to be utilized for SCP than ever described. While quantitative accuracy suffers when analyzing more than 700 cells per day, 9 histone proteins can be measured in single cells analyzed at even 3,500 cells per day, a throughput 10-fold greater than any previous report. In addition, the unbiased global approach utilized herein identifies a previously uncharacterized response to this drug through the S100-A8/S100-A9 protein complex partners. This response is observed in nearly every cell of the over 1,000 analyzed in this study, regardless of the relative throughput of the method utilized. While limitations exist in the methods described herein, current technologies can easily improve upon the results presented here to allow comprehensive analysis of histone PTMs to be performed in any mass spectrometry lab. All raw and processed data described in this study has been made publicly available through the ProteomeXchange/MASSIVE repository system as MSV000093434Abstract graphic

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3