Author:
Ning Matthew,Duwadi Sudan,Yücel Meryem A.,Lühmann Alexander Von,Boas David A.,Sen Kamal
Abstract
ABSTRACTWhen analyzing complex scenes, humans often focus their attention on an object at a particular spatial location. The ability to decode the attended spatial location would facilitate brain computer interfaces for complex scene analysis (CSA). Here, we investigated capability of functional near-infrared spectroscopy (fNIRS) to decode audio-visual spatial attention in the presence of competing stimuli from multiple locations. We targeted dorsal frontoparietal network including frontal eye field (FEF) and intra-parietal sulcus (IPS) as well as superior temporal gyrus/planum temporal (STG/PT). They all were shown in previous functional magnetic resonance imaging (fMRI) studies to be activated by auditory, visual, or audio-visual spatial tasks. To date, fNIRS has not been applied to decode auditory and visual-spatial attention during CSA, and thus, no such dataset exists yet. This report provides an open-access fNIRS dataset that can be used to develop, test, and compare machine learning algorithms for classifying attended locations based on the fNIRS signals on a single trial basis.
Publisher
Cold Spring Harbor Laboratory