Curriculum learning inspired by behavioral shaping trains neural networks to adopt animal-like decision making strategies

Author:

Hocker DavidORCID,Constantinople Christine M.ORCID,Savin CristinaORCID

Abstract

1AbstractRecurrent neural networks (RNN) are ubiquitously used in neuroscience to capture both neural dynamics and behaviors of living systems. However, when it comes to complex cognitive tasks, traditional methods for training RNNs can fall short in capturing crucial aspects of animal behavior. To address this challenge, we take inspiration from a commonly used (though rarely appreciated) approach from the experimental neuroscientist’s toolkit: behavioral shaping. Our solution leverages task compositionality and models the animal’s relevant learning experiences prior to the task. Taking as target a temporal wagering task previously studied in rats, we designed a pretraining curriculum of simpler cognitive tasks that are prerequisites for performing it well. These pretraining tasks are not just simplified versions of the temporal wagering task, but reflect relevant sub-computations. We show that this approach is required for RNNs to adopt similar strategies as rats, including long-timescale inference of latent states, which conventional pretraining approaches fail to capture. Mechanistically, our pretraining supports the development of key dynamical systems features needed for implementing both inference and value-based decision making. Overall, our approach addresses a gap in neural network model training by incorporating inductive biases of animals, which is important when modeling complex behaviors that rely on computational abilities acquired from past experiences.

Publisher

Cold Spring Harbor Laboratory

Reference43 articles.

1. Artificial neural networks for neuroscientists: a primer;Neuron,2020

2. Flexible shaping: How learning in small steps helps

3. Curriculum learning for reinforcement learning domains: A framework and survey;In Journal of Machine Learning Research,2020

4. Yoshua Bengio , J érôme Louradour , Ronan Collobert , and Jason Weston . Curriculum learning. In Proceedings of the 26th annual international conference on machine learning, pages 41–48, 2009.

5. Chelsea Finn , Pieter Abbeel , and Sergey Levine . Model-agnostic meta-learning for fast adaptation of deep networks. In International conference on machine learning, pages 1126–1135. PMLR, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3