Graph Learning for Cortical Parcellation from Tensor Decompositions of Resting-State fMRI

Author:

Liu YijunORCID,Li JianORCID,Wisnowski Jessica L.ORCID,Leahy Richard M.ORCID

Abstract

ABSTRACTCortical parcellation has long been a cornerstone in the field of neuroscience, enabling the cerebral cortex to be partitioned into distinct, non-overlapping regions that facilitate the interpretation and comparison of complex neuroscientific data. In recent years, these parcellations have frequently been based on the use of resting-state fMRI (rsfMRI) data. In parallel, methods such as independent components analysis have long been used to identify large-scale functional networks with significant spatial overlap between networks. Despite the fact that both forms of decomposition make use of the same spontaneous brain activity measured with rsfMRI, a gap persists in establishing a clear relationship between disjoint cortical parcellations and brain-wide networks. To address this, we introduce a novel parcellation framework that integrates NASCAR, a three-dimensional tensor decomposition method that identifies a series of functional brain networks, with state-of-the-art graph representation learning to produce cortical parcellations that represent near-homogeneous functional regions that are consistent with these brain networks. Further, through the use of the tensor decomposition, we avoid the limitations of traditional approaches that assume statistical independence or orthogonality in defining the underlying networks. Our findings demonstrate that these parcellations are comparable or superior to established atlases in terms of homogeneity of the functional connectivity across parcels, task contrast alignment, and architectonic map alignment. Our methodological pipeline is highly automated, allowing for rapid adaptation to new datasets and the generation of custom parcellations in just minutes, a significant advancement over methods that require extensive manual input. We describe this integrated approach, which we refer to asUntamed, as a tool for use in the fields of cognitive and clinical neuroscientific research. Parcellations created from the Human Connectome Project dataset usingUntamed, along with the code to generate atlases with custom parcel numbers, are publicly available athttps://untamed-atlas.github.io.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3