Polymeric nanoparticles delivery of AMPK activator 991 prevents its toxicity and improves muscle homeostasis in Duchenne Muscular Dystrophy

Author:

Andreana IlariaORCID,Kneppers AnitaORCID,Larbi Sabrina Ben,Tifni Federica,Fessard Aurélie,Sidi-Boumedine Jaqueline,Kryza DavidORCID,Stella BarbaraORCID,Arpicco Silvia,Bordes ClaireORCID,Chevalier YvesORCID,Chazaud BénédicteORCID,Mounier RémiORCID,Lollo GiovannaORCID,Juban GaëtanORCID

Abstract

AbstractMuscular dystrophies, such as Duchenne muscular dystrophy (DMD), are caused by permanent muscle injuries leading to chronic inflammation. In that context, macrophages harbor an altered inflammatory profile that contributes to fibrosis through the secretion of the profibrotic cytokine TGFβ1. We previously showed that AMP-activated protein kinase (AMPK) activation reduces TGFβ1 secretion by macrophages and improves muscle homeostasis and muscle force in a mouse model of DMD. This makes AMPK an attractive therapeutic target for treating chronic inflammation and fibrosis in DMD. However, potent direct AMPK activators like compound 991 show strong adverse effectsin vivo,preventing their direct use. Here, we encapsulated 991 into biodegradable polymeric poly(lactic-co-glycolic) acid (PLGA) nanoparticles forin vivodelivery, in an attempt to overcome toxicity issues. We show that 991-loaded PLGA nanoparticles retained drug activity on fibrotic macrophagesin vitro, by reducing their secretion of TGFβ1. In the D2-mdx pre-clinical DMD mouse model, intravenously injected PLGA nanoparticles reached gastrocnemius and diaphragm muscles, which are the most affected muscles in this model. Chronic intravenous injections of 991-loaded PLGA nanoparticles decreased inflammation in both muscles, which was associated with fibrosis reduction and increase in myofiber size and muscle mass in the gastrocnemius. No impact on blood cell counts and liver enzymes was observed. These results demonstrate that nanomedicine is an efficient strategy to deliver AMPK activatorsin vivoto target inflammation and improve the dystrophic muscle phenotype.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3