Investigation of neural functional connectivity in thick acute mouse brain slices with novel multi-region 3D neural probe arrays

Author:

Smith Wesley Charles,Naumkina Zoia,Shin Hyo Geun,Chae Ui Kyu,Lee SeungHun,Park Jung-Hoon,Cho Yak Dol,Woo Ji Wan,Kwon Seok Kyu,Oh Soo Jin,Nam Min-HoORCID,Kim Tae Song,Cho Il Joo

Abstract

AbstractThere are significant limitations in investigating complex neural circuitsin vivo, including drawbacks to midline-adjacent surgeries, limited accessibility to deep brain regions and number of feasible regional targets for simultaneous recordings, and analytical or experimental biases from recording one columnar plane. On the other hand, recording extracellular neural signalsex vivoorin vitrousing planar microelectrode arrays (MEAs) only permits slice surface recordings, and since conventional slices under 400 μm-thick or dissociated cultures are used, no experiments contain a physiological multi-region circuit, drastically limiting conclusions about connectivity and pharmacology. Using thick, tract-preserving acute brain slices to record otherwise unassailable neural circuitsex vivocombines the strengths of both types of experiments, but is assumed to precipitate ischemic injury due to oxygen scarcity within the slice. Here, we report the first application of custom, multi-region silicon neural probe arrays to record spontaneous activity & optogenetically-induced functional connectivity acrosshe mesocorticolimbic pathway within tract-preserving 800 μm sagittal mouse brain slices, compared with 400 μm slices, among three brain regions: the ventral tegmental area (VTA), ventral striatum (VS), & medial prefrontal cortex (mPFC). We show that most single-unit signals are an order of magnitude below the noise floor seen using silicon probesin vivo, providing unit yields far higher than previously assumed, allowing for a deep functional understanding of acute slice condition compared to the assumed deterioration due to ischemia. Overall, our method allows for acute circuit manipulations beyond what is available in vivo, with far more information than conventional slice preparations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3