Pixel walking along the boreal forest–Arctic tundra ecotone: Large scale ground-truthing of satellite-derived greenness (NDVI)

Author:

Wong Russell E.ORCID,Berner Logan T.ORCID,Sullivan Patrick F.ORCID,Potter Christopher S.,Dial Roman J.ORCID

Abstract

ABSTRACTSatellite remote sensing of climate-driven changes in terrestrial ecosystems continues to improve, yet interpreting and rigorously validating these changes requires extensive ground-truthed data. Satellite measurements of vegetation indices, such as the Normalized Difference Vegetation Index (NDVI, or vegetation greenness), indicate widespread vegetation change in the Arctic that is associated with rapid warming. Plot-based studies have indicated greater vegetation greenness generally corresponds to greater plant biomass and deciduous shrub cover. However, the spatial scale of traditional plot-based sampling is much smaller than the resolution of most satellite imagery and thus does not fully describe how plant characteristics such as structure and taxonomic composition relate to satellite measurements of greenness. To improve interpretation of Landsat measurements of vegetation greenness in the Arctic, we developed and implemented a method that links satellite measurements with ground-based vegetation classifications. Here we describe data collected across the central Brooks Range of Alaska by field sampling hundreds of Landsat pixels per day, with a field campaign total of 23,213 pixels (30 m). Our example dataset shows that vegetation with the greatest Landsat greenness was taller than 1m, woody, and deciduous; vegetation with lower greenness tended to be shorter, evergreen, or non-woody. We also show that understory vegetation influences Landsat greenness. Our methods advance efforts to inform satellite data with ground-based vegetation observations using field samples at spatial scales more closely matched to the resolution of remotely sensed imagery.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3