RhoA activation promotes glucose uptake to elevate proliferation in MAPK inhibitor resistant melanoma cells

Author:

Murali Vasanth SiruvallurORCID,Rajendran DivyaORCID,Isogai TadamotoORCID,DeBerardinis Ralph J.,Danuser GaudenzORCID

Abstract

AbstractCutaneous melanomas harboring a B-RafV600Emutation are treated with immune check point inhibitors or kinase inhibitor combination therapies relying on MAPK inhibitors (MAPKi) Dabrafenib and Trametinib (Curti and Faries, 2021). However, cells become resistant to treatments over the timespan of a few months. Resistance to MAPKi has been associated with adoption of an aggressive amoeboid phenotype characterized by elevated RhoA signaling, enhanced contractility and thick cortical filamentous actin (F-actin) structures (Kim et al., 2016; Misek et al., 2020). Targeting active RhoA through Rho-kinase (ROCK) inhibitors, either alone or in combination with immunotherapies, reverts MAPKi-resistance (Misek et al., 2020; Orgaz et al., 2020). Yet, the mechanisms for this behavior remain largely unknown. Given our recent findings of cytoskeleton’s role in cancer cell proliferation (Mohan et al., 2019), survival (Weems et al., 2023), and metabolism (Park et al., 2020), we explored possibilities by which RhoA-driven changes in cytoskeleton structure may confer resistance. We confirmed elevated activation of RhoA in a panel of MAPKi-resistant melanoma cell lines, leading to a marked increase in the presence of contractile F-actin bundles. Moreover, these cells had increased glucose uptake and glycolysis, a phenotype disrupted by pharmacological perturbation of ROCK. However, glycolysis was unaffected by disruption of F-actin bundles, indicating that glycolytic stimulation in MAPKi-resistant melanoma is independent of F-actin organization. Instead, our findings highlight a mechanism in which elevated RhoA signaling activates ROCK, leading to the activation of insulin receptor substrate 1 (IRS1) and P85 of the PI3K pathway, which promotes cell surface expression of GLUT1 and elevated glucose uptake. Application of ROCK inhibitor GSK269962A results in reduced glucose uptake and glycolysis, thus impeding cell proliferation. Our study adds a mechanism to the proposed use of ROCK inhibitors for long-term treatments on MAPKi-resistant melanomas.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3