Multiplexed Short-wave Infrared Imaging Highlights Anatomical Structures in Mice

Author:

Zhong XingjianORCID,Patel AmishORCID,Sun YidanORCID,Saeboe Alexander M.ORCID,Dennis Allison M.ORCID

Abstract

AbstractWhile multiplexed fluorescence imaging is frequently used forin vitromicroscopy, extending the technique to whole animal imagingin vivohas remained challenging due to the attenuation and scattering of visible and traditional near infrared (NIR-I) wavelengths. Fluorescence imaging using short-wave infrared (SWIR, 1000 – 1700 nm, a.k.a. NIR-II) light enables deeper tissue penetration for preclinical imaging compared to previous methods due to reduced tissue scattering and minimal background autofluorescence in this optical window. Combining NIR-I excitation wavelengths with multiple distinct SWIR emission peaks presents a tremendous opportunity to distinguish multiple fluorophores with high precision for non-invasive, multiplexed anatomical imaging in small animal models. SWIR-emitting semiconductor quantum dots (QDs) with tunable emission peaks and optical stability have emerged as powerful contrast agents, but SWIR imaging demonstrations have yet to move beyond two-color imaging schemes. In this study, we engineered a set of three high quantum yield lead sulfide/cadmium sulfide (PbS/CdS) core/shell QDs with distinct SWIR emissions ranging from 1100 – 1550 nm and utilize these for simultaneous three-color imaging in mice. We first use QDs to non-invasively track lymphatic drainage, highlighting the detailed network of lymphatic vessels with high-resolution with a widefield imaging over a 2 hr period. We then perform multiplexed imaging with all three QDs to distinctly visualize the lymphatic system and spatially overlapping vasculature network. This work establishes optimized SWIR QDs for next-generation multiplexed preclinical imaging, moving beyond the capability of previous dual-labeling techniques. The capacity to discriminate several fluorescent labels through non-invasive NIR-I excitation and SWIR detection unlocks numerous opportunities for studies of disease progression, drug biodistribution, and cell trafficking dynamics in living organisms.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3