Multistability and predominant double-positive states in a four node mutually repressive network: a case study of Th1/Th2/Th17/T-reg differentiation

Author:

Duddu Atchuta Srinivas,Andreas Elizabeth,Harshavardhan BV,Grover Kaushal,Singh Vivek Raj,Hari Kishore,Jhunjhunwala SiddharthORCID,Cummins BreschineORCID,Gedeon Tomas,Jolly Mohit KumarORCID

Abstract

AbstractElucidating the emergent dynamics of complex regulatory networks enabling cellular differentiation is crucial to understand embryonic development and suggest strategies for synthetic circuit design. A well-studied network motif often driving cellular decisions is a toggle switch - a set of two mutually inhibitory lineage-specific transcription factors A and B. A toggle switch often enables two possible mutually exclusive states - (high A, low B) and (low A, high B) - from a common progenitor cell. However, the dynamics of networks enabling differentiation of more than two cell types from a progenitor cell is not well-studied. Here, we investigate the dynamics of four master regulators A, B, C and D inhibiting each other, thus forming a toggle tetrahedron. Our simulations show that a toggle tetrahedron predominantly allows for co-existence of six ‘double positive’ or hybrid states where two of the nodes are expressed relatively high as compared to the remaining two - (high A, high B, low C, low D), (high A, low B, high C, low D), (high A, low B, low C, high D), (low A, high B, high C, low D), (low A, low B, high C, high D) and (low A, high B, low C, high D). Stochastic simulations showed state-switching among these phenotypes, indicating phenotypic plasticity. Finally, we apply our results to understand the differentiation of naive CD4+T cells into Th1, Th2, Th17 and Treg subsets, suggesting Th1/Th2/Th17/Treg decision-making to be a two-step process. Our results reveal multistable dynamics and establish the stable co-existence of hybrid cell-states, offering a potential explanation for simultaneous differentiation of multipotent naïve CD4+ T cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3