Evidence of artemisinin partial resistance in North-western Tanzania: clinical and drug resistance markers study

Author:

Ishengoma Deus S.,Mandara Celine I.ORCID,Bakari CatherineORCID,Fola Abebe A.ORCID,Madebe Rashid A.,Seth Misago D.ORCID,Francis FilbertORCID,Buguzi Creyton,Moshi Ramadhan,Garimo Issa,Lazaro Samwel,Lusasi Abdallah,Aaron Sijenunu,Chacky Frank,Mohamed Ally,Njau Ritha J. A.,Kitau Jovin,Rasmussen Charlotte,Bailey Jeffrey A.,Juliano Jonathan J.,Warsame Marian

Abstract

AbstractBackgroundArtemisinin-based combination therapies (ACTs) are the recommended antimalarial drugs for the treatment of uncomplicated malaria. The recent emergence of artemisinin partial resistance (ART-R) in Rwanda, Uganda and Eritrea is of great concern. In Tanzania, a nationwide molecular malaria surveillance in 2021 showed a high prevalence of the Kelch13 (K13) 561H mutation in Plasmodium falciparum from the north-western region, close to the border with Rwanda and Uganda. This study was conducted in 2022 to evaluate the efficacy of artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ) for the treatment of uncomplicated falciparum malaria and to confirm the presence of ART-R in Tanzania.MethodsThis single-arm study evaluated the efficacy of AL and ASAQ in eligible children aged six months to 10 years at Bukangara Dispensary in Karagwe District, Kagera Region. Clinical and parasitological responses were monitored for 28 days according to standard WHO protocol. Mutations in K13 gene and extended haplotypes with these mutations were analysed using Sanger and whole genome sequencing data, respectively.Findings176 children (88 in each AL and ASAQ group) were enrolled and all achieved the defined outcomes. PCR-corrected adequate clinical and parasitological response (ACPR) was 98.3% (95% CI: 90.8-100) and 100.0% (95% CI: 95.8-100) for AL and ASAQ, respectively. Parasitaemia on day 3 was observed in 11/88 (12.5%) and 17/88 (19.3%) in the AL and ASAQ groups, respectively. The half-life of parasitaemia was significantly higher (>6.5 hrs) in patients with parasitaemia on day 3 and/or mutations in K13 gene at enrolment. Most patients with parasitaemia on day 3 (8/11 = 72.7% in the AL group and 10/17 = 58.8% in the ASAQ group) had 561H mutation at enrolment. The parasites with K13 mutations were not similar to those from south-east Asia and Rwanda, but had the same core haplotype of a new 561H haplotype reported in Kagera in 2021.InterpretationThese findings confirm the presence of ART-R in Tanzania. A context-specific strategy to respond to artemisinin partial resistance is urgently needed. Although both AL and ASAQ showed high efficacy, increased vigilance for reduced efficacy of these ACTs and detection of ART-R in other parts of the country is critical.FundingBill and Melinda Gates Foundation to the World Health Organization (WHO, OPP 1209843) and the National Institute for Medical Research (NIMR, Inv. No. 002202), and US National Institute for Health (R01AI156267 to JAB, DSI and JJJ, and K24AI134990 to JJJ).Research in contextEvidence before this studyArtemisinin partial resistance (ART-R) is defined as delayed clearance after treatment with an artemisinin combination therapy (ACT) or artesunate monotherapy of a parasite strain carrying a validated marker of ART-R. At present, 13 different Kelch13 (K13) mutations have been validated as markers of ART-R. ART-R is confirmed in an area if a quality-controlled study using an ACT or artesunate monotherapy, finds more than 5% of patients have parasites with validated K13 mutations and delayed clearance as evidenced by either persistent parasitemia detected by microscopy on day 3 or a parasite clearance half-life of ≥5 hours. ART-R was first reported from Cambodia in 2008 and later from several countries in Southeast Asia. Published articles up to December 2023 were searched in PubMed with the terms; “artemisini n”, “artemisinin partial resistance”, “artemisinin-based combination therapies”, “Kelch 13” in combination with “Africa” or “Tanzania”. The publications confirmed the emergence of ART-R associated with mutations in K13: 561H in Rwanda, A675V and C469Y in Uganda and R622I in Eritrea. All these studies showed a high cure rate of the tested ACTs. The R622I mutant was not reported from Southeast Asia but is circulating in the Horn of Africa (Eritrea, Ethiopia, Sudan and Somalia). In Tanzania, a nationwide malaria molecular surveilla nce launched in January 2021 showed a high prevalence of 561H mutation in the north-western region of Kagera, close to the border with Rwanda and Uganda.Added value of this studyThe study documented delayed parasite clearance associated with pre-treatment validated K13 561H mutation. It confirms and provides evidence for the first-time of ART-R in Kagera region, north-western Tanzania, an area close to the border with Rwanda and Uganda. This makes Tanzania the fourth country in Africa with confirmed ART-R. The study documents presence of K13 mutation associated with ART-R suggesting that partial resistance to artemisinins is rapidly evolving and can still be found in more areas of Africa. Parasites with K13 mutations were not similar to those from south-east Asia and Rwanda, but had the same core haplotype of a new 561H haplotype reported in Kagera in 2021.The findings of this study furthermore show that both AL and ASAQ are highly effective.Implications of all the available evidenceThe emergence of confirmed ART-R in Africa, so far in four countries (Rwanda, Uganda, Eritrea and Tanzania), poses a serious threat to malaria control in Africa, which accounts for more than 95% of the global malaria burden. The current evidence of ART-R in Kagera region calls for an urgent response, including the development of a context-specific strategy based on the recently launched WHO strategy to respond to antimalarial drug resistance in Africa. The fact that ART-R has been confirmed in Kagera region, an area bordering Rwanda and Uganda, where resistance also has been reported, also calls for cross-border collaboration to harmonize strategies to combat this threat in the Great Lakes region of Africa. Nationwide studies on molecular markers in Tanzania, which revealed a high prevalence of K13 validated mutatio ns in the Kagera region, guided where to conduct the current study. This suggests that molecular marker surveillance could play an important role in conducting targeted antimalarial drug efficacy studies and confirming ART-R in other parts of Tanzania and beyond.

Publisher

Cold Spring Harbor Laboratory

Reference30 articles.

1. WHO. WHO guidelines for malaria, 16 February 2021. Geneva: World Health Organizat ion, 2021 https://iris.who.int/handle/10665/339609.

2. WHO. Methods for surveillance of antimalarial drug efficacy methods for surveillance of antimalarial drug efficacy. https://apps.who.int/iris/bitstream/handle/10665/44048/9789241597531_eng.pdf (accessed Dec 28, 2023).

3. WHO. Report on antimalarial drug efficacy, resistance and response: 10 years of surveillance (2010-2019). World Health Organization, 2020. https://www.who.int/publications/i/item/9789240012813 (accessed Dec 28, 2023)

4. Continued Low Efficacy of Artemether-Lumefantrine in Angola in 2019

5. Anti-malarial efficacy and resistance monitoring of artemether-lumefantrine and dihydroartemisinin-piperaquine shows inadequate efficacy in children in Burkina Faso, 2017–2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3