Lateral Flow Assays Biotesting by Utilizing Plasmonic Nanocrystals Made of Inexpensive Metals – Replacing Gold

Author:

Bahamondes Lorca Veronica A.ORCID,Ávalos-Ovando OscarORCID,Sikeler Christoph,Santiago Eva YazminORCID,Skelton EliORCID,Wang YongORCID,Yang RuiqiORCID,Cimatu Katherine Leslee A.ORCID,Baturina Olga,Wang Zhewei,Liu Jundong,Slocik Joseph M.ORCID,Wu ShiyongORCID,Ma DonglingORCID,Pastukhov Andrei I.ORCID,Kabashin AndreiORCID,Kordesch Martin E.ORCID,Govorov Alexander O.ORCID

Abstract

AbstractDifferent kinds of nanoparticles can be conjugated with diverse biomolecular receptors and employed in biosensing to detect a target analyte (biomarkers of infections, cancer markers, etc.) from biological samples. This proven concept was largely used during the COVID-19 pandemic in over-the-counter gold nanoparticles-based paper strip tests. Considering that gold is expensive and is being largely depleted, here we show that novel and less expensive plasmonic counterparts, titanium nitride (TiN) nanoparticles, and copper nanoparticles covered with a gold shell (Cu@Au) perform comparable or better than gold nanoparticles. After functionalization, these novel nanoparticles provide a high signal, efficiency, and specificity when used on paper strip tests. This allows an easy visual determination of the positive signal and the development of more affordable paper-based test strips. Moreover, by conducting the machine learning study, we have shown that the bio-detection with TiN is more accurate than that with gold, demonstrating the advantage of a broadband plasmonic material. The implementation of lateral flow assays based on TiN and Cu@Au nanoparticles promises a drastic cost reduction of this technology and its widespread applications in tasks of biomedical diagnostics, environmental and food safety, security and doping screening.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3