Comparing 3D genome organization in multiple species using Phylo-HMRF

Author:

Yang YangORCID,Zhang Yang,Ren Bing,Dixon Jesse,Ma JianORCID

Abstract

AbstractRecent developments in whole-genome mapping approaches for the chromatin interactome (such as Hi-C) have offered new insights into 3D genome organization. However, our knowledge of the evolutionary patterns of 3D genome structures in mammalian species remains surprisingly limited. In particular, there are no existing phylogenetic-model based methods to analyze chromatin interactions as continuous features across different species. Here we develop a new probabilistic model, named phylogenetic hidden Markov random field (Phylo-HMRF), to identify evolutionary patterns of 3D genome structures based on multi-species Hi-C data by jointly utilizing spatial constraints among genomic loci and continuous-trait evolutionary models. The effectiveness of Phylo-HMRF is demonstrated in both simulation evaluation and application to real Hi-C data. We used Phylo-HMRF to uncover cross-species 3D genome patterns based on Hi-C data from the same cell type in four primate species (human, chimpanzee, bonobo, and gorilla). The identified evolutionary patterns of 3D genome organization correlate with features of genome structure and function, including long-range interactions, topologically-associating domains (TADs), and replication timing patterns. This work provides a new framework that utilizes general types of spatial constraints to identify evolutionary patterns of continuous genomic features and has the potential to reveal the evolutionary principles of 3D genome organization.

Publisher

Cold Spring Harbor Laboratory

Reference42 articles.

1. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods

2. E. H. Adelson and J. R. Bergen . The plenoptic function and the elements of early vision. Computational Models of Visual Processing, pages 3–20, 1991.

3. H. Akaike . Information theory and an extension of the maximum likelihood principle. pages 267–281. Proceeding of Second International Symposium on Information Theory, 1973.

4. Organization and function of the 3D genome

5. An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3