Microbial Reduction of Metal-Organic Frameworks Enables Synergistic Chromium Removal

Author:

Springthorpe Sarah K.,Dundas Christopher M.ORCID,Keitz Benjamin K.ORCID

Abstract

AbstractMicrobe-material redox interactions underpin many emerging technologies, including bioelectrochemical cells and bioremediation. However, commonly utilized material substrates, such as metal oxides, suffer from a lack of tunability and can be challenging to characterize. In contrast, metal-organic frameworks, a class of porous materials, exhibit well-defined structures, high crystallinity, large surface areas, and extensive chemical tunability. Here, we report that metal-organic frameworks can support the growth of the electroactive bacterium Shewanella oneidensis. Specifically, we demonstrate that Fe(III)-containing frameworks, MIL-100 and Fe-BTC, can be reduced by the bacterium via its extracellular electron transfer pathways and that reduction rate/extent is tied to framework structure, surface area, and particle morphology. In a practical application, we show that cultures containing S. oneidensis and reduced frameworks can remediate lethal concentrations of Cr(VI), and that pollutant removal exceeds the performance of either component in isolation or bioreduced iron oxides. Repeated cycles of Cr(VI) dosing had little effect on bacterial viability or Cr(VI) adsorption capacity, demonstrating that the framework confers protection to the bacteria and that no regenerative step is needed for continued bioremediation. In sum, our results show that metal-organic frameworks can serve as microbial respiratory substrates and suggest that they may offer a promising alternative to metal oxides in applications seeking to combine the advantages of bacterial metabolism and synthetic materials.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3