Predictive engineering and optimization of tryptophan metabolism in yeast through a combination of mechanistic and machine learning models

Author:

Zhang Jie,Petersen Søren D.,Radivojevic Tijana,Ramirez Andrés,Pérez Andrés,Abeliuk Eduardo,Sánchez Benjamín J.,Costello Zachary,Chen Yu,Fero Mike,Martin Hector Garcia,Nielsen Jens,Keasling Jay D.,Jensen Michael K.

Abstract

SUMMARYIn combination with advanced mechanistic modeling and the generation of high-quality multi-dimensional data sets, machine learning is becoming an integral part of understanding and engineering living systems. Here we show that mechanistic and machine learning models can complement each other and be used in a combined approach to enable accurate genotype-to-phenotype predictions. We use a genome-scale model to pinpoint engineering targets and produce a large combinatorial library of metabolic pathway designs with different promoters which, once phenotyped, provide the basis for machine learning algorithms to be trained and used for new design recommendations. The approach enables successful forward engineering of aromatic amino acid metabolism in yeast, with the new recommended designs improving tryptophan production by up to 17% compared to the best designs used for algorithm training, and ultimately producing a total increase of 106% in tryptophan accumulation compared to optimized reference designs. Based on a single high-throughput data-generation iteration, this study highlights the power of combining mechanistic and machine learning models to enhance their predictive power and effectively direct metabolic engineering efforts.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-linearity of Metabolic Pathways Critically Influences the Choice of Machine Learning Model;Frontiers in Artificial Intelligence;2022-06-10

2. The era of big data: Genome-scale modelling meets machine learning;Computational and Structural Biotechnology Journal;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3