Chemically Accurate Relative Folding Stability of RNA Hairpins from Molecular Simulations

Author:

Smith Louis G.,Tan Zhen,Spasic Aleksandar,Dutta Debapratim,Salas-Estrada Leslie A.,Grossfield Alan,Mathews David H.

Abstract

AbstractThis study describes a comparison between melts and simulated stabilities of the same RNAs that could be used to benchmark RNA force fields, and potentially to determine future melt-ing experiments. Using umbrella sampling molecular simulations of three 12-nucleotide RNA hairpin stem loops, for which there are experimentally determined free energies of unfold-ing, we projected unfolding onto the reaction coordinate of end to end (5′ to 3′ hydroxyl oxygen) distance. We estimate the free energy change of the transition from the native con-formation to a fully extended conformation—the stretched state—with no hydrogen bonds between non-neighboring bases. Each simulation was performed four times using the AM-BER FF99+bsc0+χOL3 force field and each window, spaced at 1 Å intervals, was sampled for 1 μs, for a total of 552 μs of simulation. We compared differences in the simulated free energy changes to analogous differences in free energies from optical melting experiments using ther-modynamic cycles where the free energy change between stretched and random coil sequences is assumed to be sequence independent. The differences between experimental and simulated ΔΔG° are on average 1.00 ± 0.66 kcal/mol, which is chemically accurate and suggests analo-gous simulations could be used predictively. We also report a novel method to identify where replica free energies diverge along the reaction coordinate, thus indicating where additional sampling would most improve convergence. We conclude by discussing methods to more economically perform such simulations.

Publisher

Cold Spring Harbor Laboratory

Reference100 articles.

1. Gesteland, R. ; Cech, T. ; Atkins, J. The RNA World: The Nature of Modern RNA Suggests a Prebiotic RNA World; Cold Spring Harbor monograph series; Cold Spring Harbor Laboratory Press, 2006.

2. Eukaryotic Transcriptional Dynamics: From Single Molecules to Cell Populations;Nat. Rev. Genet.,2013

3. RNA Polymerase Active Center: The Molecular Engine of Transcription

4. RIBOSOMES AND TRANSLATION

5. Translating the Genome in Time and Space: Specialized Ribosomes, RNA Regulons, and RNA-Binding Proteins

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3