Biomedical Text Mining for Research Rigor and Integrity: Tasks, Challenges, Directions

Author:

Kilicoglu HalilORCID

Abstract

AbstractAn estimated quarter of a trillion US dollars is invested in the biomedical research enterprise annually. There is growing alarm that a significant portion of this investment is wasted, due to problems in reproducibility of research findings and in the rigor and integrity of research conduct and reporting. Recent years have seen a flurry of activities focusing on standardization and guideline development to enhance the reproducibility and rigor of biomedical research. Research activity is primarily communicated via textual artifacts, ranging from grant applications to journal publications. These artifacts can be both the source and the end result of practices leading to research waste. For example, an article may describe a poorly designed experiment, or the authors may reach conclusions not supported by the evidence presented. In this article, we pose the question of whether biomedical text mining techniques can assist the stakeholders in the biomedical research enterprise in doing their part towards enhancing research integrity and rigor. In particular, we identify four key areas in which text mining techniques can make a significant contribution: plagiarism/fraud detection, ensuring adherence to reporting guidelines, managing information overload, and accurate citation/enhanced bibliometrics. We review the existing methods and tools for specific tasks, if they exist, or discuss relevant research that can provide guidance for future work. With the exponential increase in biomedical research output and the ability of text mining approaches to perform automatic tasks at large scale, we propose that such approaches can add checks and balances that promote responsible research practices and can provide significant benefits for the biomedical research enterprise.Supplementary informationSupplementary material is available at BioRxiv.

Publisher

Cold Spring Harbor Laboratory

Reference166 articles.

1. Abu-Jbara, A. and Radev, D. (2012). Reference scope identification in citing sentences. In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT ’12, pages 80–90.

2. Automatically classifying sentences in full-text biomedical articles into Introduction, Methods, Results and Discussion

3. Automatically classifying the role of citations in biomedical articles;AMIA Annual Symposium proceedings,2010

4. Alex, B. , Grover, C. , Haddow, B. , Kabadjor, M. , Klein, E. , Matthews, M. , Roebuck, S. , Tobin, R. , and Wang, X. (2008). Assisted curation: Does text mining really help? In Proceedings of Pacific Symposium on Biocomputing, pages 556–567.

5. Making research articles fit for purpose: structured reporting of key methods and findings;Trials,2015

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3