Dynamic metabolic profiles of marine macroalgaUlva proliferaduring fragmentation-induced proliferation

Author:

He YanliORCID,Wang Yanhui,Hu Chaoyang,Sun Xue,Li Yahe,Xu Nianjun

Abstract

AbstractUlva prolifera, a type of marine macroalgae, is the causative species behind green tides mainly in the Yellow Sea and adjacent regions, nevertheless, it can be used as food or animal feed in South China. The vegetative fragments ofU. proliferaare an important seed source for successive green tide blooms. Fragmentation shortens the transition time from the vegetative state to the reproductive state. However, the translation of the algal metabolites during gametogenesis was far from well understood. In this study, the dynamic metabolic profiles ofU. proliferathallus during fragmentation-induced proliferation were investigated using non-targeted metabolomics approach in a time series of experiments in June 2017. After a 30 min low temperature shock, fragmentation induced a reproductive response of 91.57% ofU. proliferain 48 h, whereas that was only 21.43% in the control group. A total of 156 chromatographic peaks were detected, and 63 metabolites were significantly changed inU. proliferaduring reproduction. The results of the Kinetic metabolic pattern showed that the fragments not only induced the formation of sporangium, but also complicated their metabolites accumulation. During fragmentation-induced proliferation,U. proliferaconsumed different sugars at different time points. γ-aminobutyric acid (GABA), glutamic acid, gallic acid, and malic acid may play important roles in germ cell formation and release ofU. prolifera, whereas n-hexanol, 2-methyl-3-phenylindole, and 3-indoleacetonitrile may be beneficial in biotic stress resistance. Compared with the control group, the metabolites, such as alcohol and organic acid, also showed significant difference with the photoperiod at the initial stage of proliferation (before 60 h). In conclusion, that the metabolites including sugars, organic acids, and alcohol changed with different photoperiod may be the strategy forU. proliferato cope with adverse environment and rapid proliferation.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3