Evaluation of machine learning methods to predict peptide binding to MHC Class I proteins

Author:

Bhattacharya Rohit,Sivakumar Ashok,Tokheim Collin,Guthrie Violeta Beleva,Anagnostou Valsamo,Velculescu Victor E.,Karchin Rachel

Abstract

AbstractBinding of peptides to Major Histocompatibility Complex (MHC) proteins is a critical step in immune response. Peptides bound to MHCs are recognized by CD8+ (MHC Class I) and CD4+ (MHC Class II) T-cells. Successful prediction of which peptides will bind to specific MHC alleles would benefit many cancer immunotherapy appications. Currently, supervised machine learning is the leading computational approach to predict peptide-MHC binding, and a number of methods, trained using results of binding assays, have been published. Many clinical researchers are dissatisfied with the sensitivity and specificity of currently available methods and the limited number of alleles for which they can be applied. We evaluated several recent methods to predict peptide-MHC Class I binding affinities and a new method of our own design (MHCnuggets). We used a high-quality benchmark set of 51 alleles, which has been applied previously. The neural network methods NetMHC, NetMHCpan, MHCflurry, and MHCnuggets achieved similar best-in-class prediction performance in our testing, and of these methods MHCnuggets was significantly faster. MHCnuggets is a gated recurrent neural network, and the only method to our knowledge which can handle peptides of any length, without artificial lengthening and shortening. Seventeen alleles were problematic for all tested methods. Prediction difficulties could be explained by deficiencies in the training and testing examples in the benchmark, suggesting that biological differences in allele-specific binding properties are not as important as previously claimed. Advances in accuracy and speed of computational methods to predict peptide-MHC affinity are urgently needed. These methods will be at the core of pipelines to identify patients who will benefit from immunotherapy, based on tumor-derived somatic mutations. Machine learning methods, such as MHCnuggets, which efficiently handle peptides of any length will be increasingly important for the challenges of predicting immunogenic response for MHC Class II alleles.Author SummaryMachine learning methods are a popular approach for predicting whether a peptide will bind to Major Histocompatibility Complex (MHC) proteins, a critical step in activation of cytotoxic T-cells. The input to these methods is a peptide sequence and an MHC allele of interest, and the output is the predicted binding affinity. MHC Class I and II proteins bind peptides of 8-11 amino acids and 16-26 amino acids respectively. This has been an obstacle for machine learning, because the methods used to date can only handle fixed-length inputs. We show that a recently developed technique known as gated recurrent neural networks can handle peptides of variable length and predict peptide-MHC binding as well or better than existing methods, at substantially faster speeds. Our results have implications for the hundreds of MHC alleles that cannot be predicted with current methods.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3