Author:
Kim Yoori,Furman Christopher M.,Manhart Carol M.,Alani Eric,Finkelstein Ilya J.
Abstract
AbstractIntrinsically disordered regions (IDRs) are present in at least 30% of the eukaryotic proteome and are enriched in chromatin-associated proteins. Using a combination of genetics, biochemistry, and single-molecule biophysics, we characterize how IDRs regulate the functions of the yeast MutLα (Mlh1-Pms1) mismatch repair (MMR) complex. Shortening or scrambling the IDRs in both subunits ablates MMR in vivo. Mlh1-Pms1 complexes with shorter IDRs that disrupt MMR retain wild-type DNA binding affinity but are impaired for diffusion on both naked and nucleosome-coated DNA. Moreover, the IDRs also regulate the ATP hydrolysis and nuclease activities that are encoded in the structured N- and C-terminal domains of the complex. This combination of phenotypes underlies the catastrophic MMR defect seen with the mutant MutLα in vivo. More broadly, this work highlights an unanticipated multi-functional role for IDRs in regulating both facilitated diffusion on chromatin and nucleolytic processing of a DNA substrate.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献